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E L E C T R O M A G N E T I C  A N D  T E M P E R A T U R E  F I E L D S  IN D I R E C T  

R E S I S T A N t . _ .  H E A T I N G  OF C O M P O U N D  A X I S Y M M E T R I C  B O D I E S  

Yu. I. N y a s h i n  and V.  M.  Tver'e UDC 537.8:536 

A nonstatio,r,l, ry coupled problem o/thermoeleetrodynamics is fomnulated for resistance heat- 
ing of dissimilar ferro- and paramagnetic bodies by an alternating current. An iterative al- 
gor'ithm for solving this problem by finite-difference methods is proposed. Temperature and 
electromagnetic-field distributions are obtained for" the processes of direct resistance heating 
both in air and in the region of the molding tool. 

I n t r o d u c t i o n .  Direct resistance heating of metals and alloys have been widely used in industry, in 
particular, in tile manufacture of anchor heads for ttle reinforcement of building structures by heating in air, 
heating of powder materials in a container for tlmir sintering to a specified level of porosity, etc. The process 
of resistance heating is easily automated and combined (for the contact nmthod of heating) with the process 
of deformation of a billet. A progressive technology related t6 resistance heating is electric upsetting, which 
allows one to produce details of complex shape with high accuracy [1 3]. Electric upsetting is performed in 
two steps. Initially, tile billet is heated by an alternating current of commercial frequency f = 50 Hz. After 
that, the current is disconnected and tile billet is deformed to a spe('ified configuration. A diagram of direct 
resistance heating of a billet for electric upsetting is shown in Fig. 1. Because of the short duration of the 
second stage of electric upsetting, the temperature field in the billet is formed at the stage of direct resistance 
heating [4]. 

At the second stage of electric upsetting, an imt)ortant condition for implementation of tim molding 
process is precise local heating only of the region of the billet that undergoes deformation, taking into 
account the plastic properties of the treated material. For the majority of materials, tile maxinmm degree of 
deformation accumulated before failure is in a narrow range of temperature (~ above the Curie teml)erature 
(it [5]. The temperature distribution and value in the heated region should be predetermined, taking into 
account the configuration of the finished article and the limitations due to the thermal strength of the tool. 
Only satisfaction of these conditions makes it possible to produce details of required shape'without flash and 
bur and with a precisely filled die [2, 4]. 

The existing models describing the resistance heating stage ignore the coupling of the electromagnetic 
and temperature fields in tile volmne of bodies in contact, use the solution of the classical problems of penetra- 
tion of a plane electromagzmtic wa~  into a half-space or the problem of electromagnetic-field distribution in 
an infinite conducting cylinder, and, in many cases, explain the plwsical l)icture of heating only qualitatively 
[1, 6-8]. We note that the skin effect in f>rromagnetic materials is significant even at low frequencies [9, 10]. 
Deformation of a billet without failure under the temperature-force limitations due to the strength of the 
tool requires knowledge not only of the vohnne-average temperature (tlm so-called "forging" temperatur(;) 
but also the distributions of electromagnetic and temperature fields and the history of their formation. In 
the present work, we develop a nmthematical model of direct resistance heating for a system of axisymmetric 
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Fig. 1. Diagram of direct resistance heating of a billet for electric 
upsetting: billet (1), punches (2 and 5), remow~ble die (3), and 
die holder (4); Oz is the symmetry axis, L is the length o[ the 
billet, l+ is the length of the upset part o[ the billet, ll = L - / + ,  
and R1, R2, R:t, and R4 are the radii of the billet, the upset part, 
the removable die, and the die hokter, respectively. 

ferro- and paramagnetic dissimilar bodies taking into account the skin effect and the temperature dependences 
of electromagnetic properties [electric conductivity a (or resistivity p --- l / a )  and relative permeability #r] 
and theruml properties ( thermal  conductivity A, specific heat c, and density 7) of materials. We note that 
the sharI) peaks in the dis t r ibut ion of the specific heat c and the inflections of the parameters A, ?, and p 
near the Curie point 0 C are due  to a t)hase change with loss of magnetic properties in the neighborhood of 
this t)oint (#r -- 1 at 0 ~ 0C). At 0 < 0 C, IL,. practically does not depend on temt)erature and decreases 
rapidly to unity in a mtrrow tempera ture  region containing tim point 0 C [11]. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m .  ~,Ve use Maxwell equations in a fixed refereiwe systein for high- 
conducting bodies ignoring bias currents and, hence, tim dielectric properties of materials, which are preserved 
up to frequency w = 2zrf ---- 10 9 sec - t .  In the region "billet-tool" for axisyminetric bodies, these equations 

can be reduced to the equat ion 
OB 

V x p ( 0 ) V x H -  0 t '  (1.1) 

wtfich, together with the relat ion for magnetically soft materials, 

B = IL()~,r(O, [H[ )U ,  (1.2) 

and the conditions of equality of the tangential components of the electromagnetic-field strength vectors in 
passage through the boundary  between dissimilar media, 

Ht~ = H2T, Et~ = E2T, (1.3) 

has a unique solution [12]. In (1.1)-(1.3), H = H ( r , ~ , z , t )  and E = E(r . ~ , z , t )  are the magnetic- and 
electric-field strength vectors, respectively, It0 = 4~- x 10 -7 H /m  is the permeability of vacuum, B is the 
nmgnetic-imluction vector, r,  ~, and z are cylindrical coordinates, and t is time. Then, the density of heat 
sources qv can be defined using Maxwell equations and Ohm's law: 

V x H = j ,  j = ~(O)E. (1.4) 

Under the .loule Lenz law, q~, = p(O).j 2, where j = j (r ,  ~, z, t) is the current-density vector. 

The current-contimfity equation ~s a consequence of the first of Eqs. (1.4) leads to the condition of 
equality of the uornml components  of the current density on the boundaries of dissinfilar regions 1 and 2: 

jb ,  = J2,,. (1.5) 

The air surrounding the region "billet-tool" is considered in a vacuum al)proximation, where j - 0. 
Obviously; on the boundaries of the contact "conductor-vacuum," relation (1.5) is converted to the conditions 
of "nonpenetration" of the current  through the surface of the conductor: 
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3n = O. (1.6) 

TILe scalar and vector potentials of tile electromagnetic field, which are frequently used to siml)li~ 
tile Maxwell equations, lead in this case to a coupled system of nonlinear differential equations for tile 
vector-potential comi)onent. Therefore, we formulate the boundary-value problem of electrodynamics for the 
magnetic-field strength H [Eq. (1.1)] with relations (1.2), (1.3), (1.5), and (1.6). 

Let S = ST U Sp be a region consisting of open regions of the tool ST ((tie and (lie holder) an(t 
the billet Sp. The boundary F = Fext LJ Fint of tile region S* = S U F includes the external boundary 
Fext = Fv U Fh [J Fa, which consists of tim boundary  of contact of the billet with the punch (movable and 
fixed) Fh, tile symmetry axis Fa (axis Oz), and the boundary of contact of the billet and the tool with air 
(in the vacuum approximation) F~. The boundaries Fin  t a r e  the internal boundaries of contact of" the billet 
with the die and tim die with the die holder ibr S. We consider the possibility of simpli~'ing Eq. (1.1). 

1~Vriting tim Maxwell equations in a fixed coordinate system (r, r z), we note that  in tim case of axial 
symmetry of the field, the s trengths H and E are superpositions of the strengths of two fields: 

H = {O,H~,O} + {H,.,O,H:}, E =  {O,E~,O} + {E,.,O,E:}, 

and the magnetic field with the component H~ determines values of E~ and E:  independently of tile field 
with the comt)onent E~, which determiIms the components H~ and H: [131. 

We assume that the current I0 is suI)plied at the ends of the billet parallel to the Oz axis and n is the 
outer unit normal vector to l ~ e x t  . Then, for the field {Hr, 0, H:}, the tangential component n • H = 0 on 
F, .  Obviously, at the ends of the billet and on the symnmtry axis, H~ = 0. Hence, n • H = 0 everywhere oil 
Fext. Using the Poynting theorem in integral form, we can show that  tile electroinagnetic-field energy decays 
in the region with the specified boundary conditions. 

Thus, for tile steady stage of resistance heating there is no field with the components {H~, 0, H:} and 
{0, E~, 0}. Therefore, the electromagnetic field in the region S is determined by tile transverse-nmgnetic field 
{0, H~. 0} or an electric-type field. 

Since in the region the re  is no heterogeneity ahmg the azimuthal coordinate, we assume that  tim 
components of the electromagnetic-field strengths do not depen(l on ~. Therefore, for the region S, Eq. (1.1) 
can be written as a scalar equation for the component H~. 

To determine tile boundary  comlitions, we consider the first of Eqs. (1.4) outside tim region S* in the 
vacuum aI)proximation, i.e., ~7 • H = 0. Tlmn, H~ does not depend on z and the magnetic field is defined 
by tim relation 

= 

where c is a constant that  is evaluated with allowance for (1.3), (1.5) and (1.6) from the Aml)ere law, which 
is an integral analog of Eq. (1.4), written for S*. 

Taking into account tha t  2rr/,~ <~ T (T is the characteristic tinm of change in temperature in the 
system of bodies), we write the nmgnetic strength as 

H ;  = H~(r,  z, t) exp (-iu,'t), 

where i 2 = - 1  and H~(r, z, t) is the coml)lex oscillation ami)litude, which is slowly x~trying with time t. 
Similarly, tile current I0 and the nmgnetic induction B~ are written as simmoidal fimctions of time. This 
reI)resentation B,o is reasonable since the higher harmonics that arise fbr tile magnetic induction t)ecause of 
the nonlinearity of relation (1.2) are insignificant and. for steel, they account tbr not more than 5(~ of the 
first harmonic [9]. Then, without  changing the designations and ignoring the term containing Oltr/Ot (it is 
different from zero only in tile neighborhood of tile Curie point [14]). we obtain a coupled boundary-x-ahm 
problem of thermoelectrodynamics in the region "billet-tool." which is written in operator form ms follows. 

For problem M[H, O] = O, 

0; - Or (rH~) + p(e) --07"z/+ i~#0p~(e,  H~)H,~ = 0 in S; 
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the boundary conditions are 

Io f Rl, r = Rl. O <<. z <~ l+, 
H ~ = 0  for r----0, H~=2--~a,  a =  / -Re, ' r = R 2 ,  ll<.z<~l+, 

Ra, r = R l ,  It<<.z<~L. 

Io ~ r2/R'2t, 0 ~ < r ~ < R l ,  z = 0  and z = L ,  

H~ = ~ f(r),  f ( r )  = i 1, R1 <. r <~ R2, z = l+ and -R2 ~ r ~ /~4, Z -~- ll, 

1, RI <<.'r <~ R4, z =  L 

on the boundary Fext and 

on the boundary Fin t. 
For problem T[O, HI = O, 

HI~ -= H'2~, 
OHI~ OH,.; 

pl(O) O---~=p2(O) On 

O0 
Or 

on the boundary Fr215 and 

O( 0 /A(O 00 \  00 1 r A ( 0 ) - ~ )  + ~zz~ ) ~ z )  + q~ in S; c(0)-y(0) b-; = 7 

The initial conditions are 0 = 0(r, z, t) and 0(r, z, 0) = Oo(r, z). The boundary conditions are 

00 
r = 0, - ,X(0)  ~nn = . ~ ( 0  - 0") - (qt, on  r~  u r h  

OOl = Ae(O) Oa2 
o~ = 02, ,x~(o) ~ On 

(m the boundary Fint. Here aeff is tile effective heat-removal coeificient that takes into account heat convcction 
(( = 1) on Fh and convective and radiative heat exchange (( = 0) on Ft,. 0* is the ambient temperature, and 
qh is a heat source that  takes into account the transient contact resistance [3] on Fh. 

The volume density of the heat sources is defined by 

p(o) ( l O  (,.U~) ~- + OH; 2 

We note that  the evolution of the electromagnetic field is determined by the thermal conditions and the 
amplitude of the field depends on time t~s on a parameter.  

Direct resistance heat ing can be implemented not only for a constant value of the current Ir but also 
for a constant wdue of the voltage U~. Then, tile boundary conditions for H~ are nonstationary, i.e., for the 
magnetic-field strength, -To = I(t), where I(t) is the slowly vaD'ing amplitude of the current. 

The problem of controlling the technological process of resistance heating can be solved using a sim- 
plified fornmtation of the problem in which the presence of a (lie is allowed for by heat exchange with the 
tool under Newton's law [15, 16]. 

2. A l g o r i t h m s  o f  S o l u t i o n  a n d  N u m e r i c a l  I m p l e m e n t a t i o n .  For joint solution of the problems 
on the introduced grid of values of time, calculations are conducted by an iterative scheme of the form 

5I[H, 0 (s-L)] = 0, T[O, H (')] = 0 (s = 1.2 . . . .  ). (2.1) 

In each time step, we calculate the approximation H (s) for the temperature 0 ("- l), and then solve the problem 
T[O. H (s)] -- 0, which determines the next approximation of the temperature field 0 (s). The iterative process 
(2.1) is interrupte(t when the required accuracy [10 bs) -0('~-t)[I < e is reached. This t)rocedure divides the 
nonlinearly eout)led problems in each step [17] and allows one to find the fields H ,  E ,  and 0 by independent 
algorithms. 

Tile formulated problem is chm'acterized by discontinuities of the thermal and electrophysical properties 
on the boundaries of dissimilar regions. Therefore, the region S* is divided by a nonuniform coupled grid 
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along r and z. Roots of the Chebyshev polynomial are used as nodal values, and tile boundary nodes belong 
to tile boundary Fext in the proMem M[H,O] = 0. In the problem of determining tile temperature  field, 
the boundary F,,xt is in the middle between the ex t reme nodes of the grid. Ill tile I)rO)lem of determining 
H~, the nodes I)elong to the boundary  Fint, and in the problem T[O, H] = 0, this boundary is located in 
the middle between the nodes. Such discretization of the region provides for the second order of accuracy in 
approximating the boundary  conditions of heat exchange, ~md on the internal bomMaries, it does not require 
formulation of separate boundary  conditions [18, 19]. 

Each of the indicated problems reduces to a sys tem of algebraic equations by constructing a conservative 
difference scheme for the original differential problem [18, 19]. The t ime when the temperature reaches the 
Curie point is determined during solution. 

The prol)lem M[H, 0 ('~-1)] = 0 for a complex-vahmd equation of the type of the Hehnholtz equation 
is solved ill each time step by the Seidel method. Tile problem T[O, H (s)] = 0 is solved by a locally one- 
dimensional method using a purely implicit, absolutely stable, difference scheme [18]. The relation #r(O, IHt ) 
is approximated bv the universal magnetization curve using the basic values of #,. and H~ determined from 
experimental d,~ta ii)r each of the materials [20]. 

All expeii:aental da ta  on the properties of the materials and calculated wdues of H~ are interpolated 
by a rational spline of the third order,  which ensures continuity up to the second derivative inclusively. 

In each time step, calculations for U~ = const using the Poynting theorem [8, 12] give values of the 
resistance r* and tile reactance x*, which, besides being integral characteristics of tile energy exl)ended 
in lmating and mag~mtic-field variation, are used to calculate the electric circuit of tim resistance heating 
facility. Hence, from the expression I = Us/v/r .2 + x *'2, we can calculate the total current ill the billet, 
which is iteratively calculated in the solution of the problem M[H.O (s-l)] = 0 ill this step. In calculations 

for I,. = const, the voltage depends (m time and is defined b.v U = Ie v/r .2 + :r .2. An additional iterative 
procedure in the lt~st case is not required. 

The test calculations performed indicate tha t  the mathematical model is correct and appropriate for 
the algorithms used and tha t  the ad~pted simplifying hypotheses are valid [15, 16]. 

3. D i scus s ion  o f  R e s u l t s .  Tim detected regularities of the fbrmation of the temperature field ill 
time and vohnne for direct resistance heating of billets of various s tandard sizes show that the temperature  
difference ahmg the radius of the upset  1)art is minor and the temperature  on the billet surface here is higher 
than that on the axis up to tile Curie l)oint, after which the temperature  on the axis is somewhat higher 
than on tim surface. The  t empera tu re  distril)ution along tile length is more complicated (high gxadients 
at the contact with the punch, in particular, at the entrance to the (lie). Figure 2 shows the temperature  
distritmtion at wtrious times 7 (v = 10 sec is the end of heating) in a 30Kh13 ferromagnetic steel billet 

12.8 mm in diameter and 37 mm long at I,: = 3600 A. 
The temperature dis tr ibut ion described above is typical of all s tandard sizes of billets, and it is prac- 

tically impossible to produce a uniforIn tempera ture  field of tim upset part  of the billet. This is explained by 
the considerable nommiformity in the density of the heat  sources due to the strongly nonuniform distribution 
of the current density j :  along the radius of the billet, which takes place up to the attaimnent of the Curie 
point ill the upset region and during the entire heating process in the remaining region near the contact with 
the tool (Fig. 3). There is a characterist ic "lateral displacement" of the current density, which was described 
for tim first time in [6]. The  comI)onent j,. is Mso distrit)uted nonuniformly, but  its value is an order of 

magnitude lower than that  of j : .  
Generally. the nmtual  effect of the electromagnetic and teml)erature fields corresponds to the induction 

heating process descril)e(l in [6-8]. The situation is, however, comt)licated l)y fact that the billet h~s two 
characteristic regions: the upset par t  and the par t  located in the die. In the part  of the billet that  is not 
upset, only the initial stage of formation of the electromagnetic and temt)erature fields is observed, which is 

"retarded" by intense heat exchange with the tool. 
Figure 4 shows the distr ibutions of the resistance and reactance over the heating time, which charac- 
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Fig. 2. Temperature distribution along the length of the billet on the axis (r = 0) (curves I) and on the 
surface ( r =  R1) (curves II) for 7- = 1 (1), 2 (2), and 10 sec (3). 

Fig. 3. Distribution of the effective longitudinal component of the current density (j-> along the length 
of the billet on the axis (r = 0) (curves I) and on the surface (r = R])  (curves II) for 7" = 1 (1), 6 (2), 
and 10 sec (3). 
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Fig. 4. Distribution of the resistance (r*) and reactance (x*) of the billet over the heating time. 

Fig. 5. Effective voltage across the billet versus heating time for I~ = 3600 A. 

terize the  power of  heat ing of  the billet and the magnet ic  field, respectively.  Tile curves show tha t  r* > x* 

for all t and a fast increase in these parameters  is observed up to the  t ime t = t C, which corresponds to 

the Curie point.  After that ,  one observes inflection of  the  curves of  r*( t )  and  x*( t )  and  a cer tain increase 

in the resistance due to an increase in p(O). This behavior  is typical  o f  fe r romagnet ic  mater ia ls  and is more 

p ronounced  with s t rengthening of  the surface effect beginning from d ~ 16 ram. For nonmagne t i c  materials, 

a mono ton ic  increase in r* and .1"* is observed. 
A n  iniportant  characterist ic  of  the process is the voltage across the  billet U, which varies with time in 

the hea t ing  regime I~ = const  and is determined from the  ob ta ined  relatio~L~ r*(t) and  x*( t ) .  The  effective 

vol tage across the billet U~ w'xsus tiine is shown in Fig. 5. The  charac te r i s t ic  point  of inflection at  the moment  

t C corresponds  to the Curie t empera tu re  of  the surface layers of  the  upse t  par t  of  the  billet. At  t > 7 sec, 

most  of  the  upset par t  becomes nonmagnet ic ,  the voltage drop ceases, a n d  a small increase in Ur is observed 

( the increase in r* is more considerable than the decrease in x*). 

Thus ,  knowledge of  the impor tan t  electrotechnical character is t ics  o f  the  billet (resistances,  reactance, 
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voltage, and their time dependences) gives necessary information for calculating the electric circuit of the 
direct resistance heating facility [2, 3]. 

In industrial production, the electric circuits of electric upsetting au tomat ic  control units are designed 
so that heating is i)erf()rmed in the regime U,: = coast, which does Imt require expensive current  regulators. 
Numerical solution of the t)roblem of direct resistance heating is more conveniently performed for the regime 
L. = c o n s t ,  since for the total t ime-dependent current in the billet, an addit ional  iterative procedure  is required 
in solving the problem M [ H ,  ~] = 0. This leads to additional computing costs, which are unacceptable in 
solving optimal control t)roblems for resistance treating, where a calculation of a great number  of versions 
is re(luired. Therefore, we propose a procedure of conversion from the regime I~, = const to the regime 
U~: = coast base(l on the equality of thermal energies in the heating interval from 0 to t+ under  the condition 
of invariance of the dependen('e r* (t), which ensures "recurrence" of tile his tory of resistance heating. Then, 

t§ te 

= U2 (3.1) 

0 0 

where the dependence r*(v) and the heating time t+ are known from calculations for the r e g i m e / c  =cons t .  
The quant i ty  U~ in expression (3.1) is corrected using the power coefficient of the facility [8], whose occurrence 
is due to the voltage component that  overcomes the self-induction e.m.f. Ttle calculations of direct resistance 

heating show tile wfiidity of this method of conversion [16]. 
Figure 6 shows the temperature-field distribution in two characteristic sections (see Fig. 1) of a hard- 

alloy die from VK-20 alloy. Tim die hohler of radius R4 = 42.5 mm was made  of 4Kh4M2VFS tool steel. A 
billet of 30Kh13 steel with a radius of Rl = 6.5 mm and length of 39 mm was heated. The Curie temperature 
is 980~ for VK-20 alloy and 820~ for 4Kh4M2VFS and 30Kh13 steels. 

During the entire heating process, the temt)erature of the die remains higher than the temperature  of 
the billet region that is not upset. The nm,ximum temperature  is near the outer  surface of the die and is 
shif'ted to the del)th of the tool. The  temperature on the surface of the die holder does not exceed 80~ 

Tile current density and the heat sources are inversely proportional to the resistivities. On the surface 
of contact of tim billet and the die. the powcr of heat sources w~ries jumpwise [21]. Since the resistivity of 
VK-20 alloy is at)out three times h)wer than the resistivity of tile billet before it reaches the Curie point, 
the current "flows" into the (lie and passes basically through it and not through the undeformed part  of the 
billet. The  thermal activity Ax/X~'7 of VK-20 alloy is 30% higher than  the thermal  activity of the materials 
of the billet and the (lie holder. This leads to redistribution of tim heat flows [21] from the region of contact 
of tim billet and the die holder into ttle (lie. The temperature  on the surface of the die holder is low because 

it is cooled with water. 
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Conclus ions .  Thus, the formulated nonstationary coupled initial-boundary-value problem of thero 
moelectrodynamics for the system of axisymmetric ferro- and paranmgnetic dissimilar bodies taking into 
account the skin effect and the temperature dependences of both the electromagnetic and thermal properties 
of materials and the designed algorithms of solution nmke it possible to establish the regularities of formation 
of the electromagnetic and temperature fields in the region "billet-tool." This allows one to fornmlate and 
solve the problem of optinml control of this process (see, for example, [22]). 
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